Research

  • Home
  • Publications
  • Generative Model
  • Publications

    Category

    Research Area

    Year

    • One-shot Portrait Stylizaiton via Geometric Alignment

      Xinrui Wang, Zilin Guo, Zhuoru Li, Jinze Yu, Heng Zhang, Yusuke Iwasawa, Yutaka Matsuo, Jiaxian Guo

      Proceedings of The IEEE/CVF Winter Conference on Applications of Computer Vision 2026(WACV2026)

    • Pairwise Optimal Transports for Training All-to-All Flow-Based Condition Transfer Model

      Kotaro Ikeda, Masanori Koyama, Jinzhe Zhang, Kohei Hayashi, Kenji Fukumizu

      Advances in Neural Information Processing Systems 38 (NeurIPS 2025), December 2025.

    • Improving Reference Image Replication for Tuning-Free Personalized Image Generation

      大坂洋豊, 鈴木雅大, 松尾豊

      情報処理学会論文誌

    • Efficient Object-Centric Representation Learning using Masked Generative Modeling

      Akihiro Nakano, Masahiro Suzuki, Yutaka Matsuo

      Transactions on Machine Learning Research (TMLR)

    • The Geometry of Phase Transitions in Diffusion Models: Tubular Neighbourhoods and Singularities

      Manato Yaguchi(*) , Kotaro Sakamoto(*) , Ryosuke Sakamoto(*) , Masato Tanabe(*) , Masatomo Akagawa(*) , Yusuke Hayashi(*) , Masahiro Suzuki, Yutaka Matsuo “The Geometry of Phase Transitions in Diffusion Models: Tubular Neighbourhoods and Singularities”. Transactions on Machine Learning Research (TMLR). (*) Equal Contribution

      Transactions on Machine Learning Research (TMLR)

    • End-to-end Training of Deep Boltzmann Machines by Unbiased Contrastive Divergence with Local Mode Initialization

      Shohei Taniguchi, Masahiro Suzuki, Yusuke Iwasawa, Yutaka Matsuo

      International Conference on Machine Learning (ICML 2023) July 2023.

    • Interaction-Based Disentanglement of Entities for Object-Centric World Models

      Akihiro Nakano, Masahiro Suzuki, Yutaka Matsuo.

      “InteractioInternational Conference on Learning Representations (ICLR2023)

    • Langevin Autoencoders for Learning Deep Latent Variable Models

      Shohei Taniguchi, Yusuke Iwasawa, Wataru Kumagai, Yutaka Matsuo

      Advances in Neural Information Processing Systems 35 (NeurIPS 2022).

    • Estimating Disentangled Belief about Hidden State and Hidden Task for Meta-Reinforcement Learning

      Kei Akuzawa, Yusuke Iwasawa, Yutaka Matsuo

      Learning for Dynamics and Control (L4DC)

    • Group Equivariant Conditional Neural Processes

      Makoto Kawano, Wataru Kumagai, Akiyoshi Sannai, Yusuke Iwasawa, and Yutaka Matsuo.

      International Conference on Learning Representations 2021 (ICLR2021).