Research

研究

研究業績

カテゴリー

研究領域

  • World robot challenge 2020 – partner robot: a data-driven approach for room tidying with mobile manipulator

    Tatsuya Matsushima, Yuki Noguchi, Jumpei Arima, Toshiki Aoki, Yuki Okita, Yuya Ikeda, Koki Ishimoto, Shohei Taniguchi, Yuki Yamashita, Shoichi Seto, Shixiang Shane Gu, Yusuke Iwasawa, Yutaka Matsuo.

    Advanced Robotics. Vol. 36, No. 17-18, pp 850-869, (2022).

  • Explaining Intelligent Agent’s Future Motionon Basis of Vocabulary Learning WithHuman Goal Inference

    Fukuchi, Y., Osawa, M., Yamakawa, H., & Imai, M.

    IEEE Access, 10, 54336–54347. (2022)

  • 産業間の取引構造を用いた深層学習モデルによる生産指数の予測

    山本裕樹,落合桂一,鈴木雅大,松尾豊

    情報処理学会論文誌, (2022).

  • Fixing the train-test objective discrepancy: Iterative Image Inpainting for Unsupervised Anomaly Detection

    Hitoshi Nakanishi, Masahiro Suzuki, Yutaka Matuo.

    J-Stage in August Vol.30, (2022).

  • Hippocampal formation-inspired probabilistic generative model

    Taniguchi, A., Fukawa, A., & Yamakawa,H

    Neural Networks: The Official Journal of the International Neural Network Society.(2022)

  • A whole brain probabilistic generative model: Toward realizingcognitive architectures for developmental robots

    Taniguchi, T., Yamakawa, H., Nagai, T., Doya, K., Sakagami, M., Suzuki, M., Nakamura, T., & Taniguchi, A

    Neural Networks: The Official Journal of the International Neural Network Society.(2022)

  • Conveying Intention by Motions With Awareness of Information Asymmetry

    Fukuchi, Y., Osawa, M., Yamakawa, H., Takahashi, T., & Imai, M

    Frontiers in Robotics and AI, 9. (2022)

  • Universal Approximation with Neural Networks on Function Spaces

    Wataru Kumagai, Akiyoshi Sannai, Makoto Kawano

    Journal of Experimental & Theoretical Artificial Intelligence.(2022)

  • A survey of multimodal deep generative models

    Masahiro Suzuki, Yutaka Matsuo

    Advanced Robotics.(2022)

  • Transformerと自己教師あり学習を用いたシーン解釈手法の提案

    小林 由弥 鈴木 雅大 松尾 豊

    第37巻2号 J-STAGE, (2022)