Research

研究

  • Home
  • 研究業績
  • 研究業績

    カテゴリー

    研究領域

    • Group Equivariant Conditional Neural Processes

      Makoto Kawano, Wataru Kumagai, Akiyoshi Sannai, Yusuke Iwasawa, and Yutaka Matsuo.

      International Conference on Learning Representations 2021 (ICLR2021).

    • Deployment-Efficient Reinforcement Learning via Model-Based Offline Optimization

      Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Shane Gu.

      International Conference on Learning Representations 2021 (ICLR2021).

    • 解剖学的構造から見える脳の計算機能

      山川 宏

      日本神経回路学会誌, 28(4), pp. 147–150, 2021. 3

    • Variational Inference for Learning Representations of Natural Language Edits

      Edison Marrese-Taylor, Machel Reid and Yutaka Matsuo.

      The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21). February 2021.

    •  脳に学んだカノニカル知能機構の構築にむけて ―学習で得た知識を多面的に再利用する仕組みとは―

      山川宏

      認知モデル研究会, オンライン会議(日本標準時)

    • 2021年度 World Robot Competition Service Robot Category Partner Robot Challenge: 準優勝

      松嶋 達也ほか

    • DORi: Discovering Object Relationships for Moment Localization of a Natural Language Query in a Video

      Cristian Rodriguez-Opazo, Edison Marrese-Taylor, Basura Fernando, Hongdong Li and Stephen Gould

      The IEEE Winter Conference on Applications of Computer Vision (WACV). January 2021

    • 深層生成モデルと世界モデル

      第13回汎用人工知能研究会

    • Pixyz: a framework for developing deep generative models

      Tutorial on Deep Probabilistic Generative Models for Robotics (IROS2020)

    • Modeling Task Uncertainty for Safe Meta-imitation Learning

      Tatsuya Matsushima, Naruya Kondo, Yusuke Iwasawa, Kaoru Nasuno, Yutaka Matsuo

      Frontiers in Robotics and AI, Vol. 7, pp.189,(2020)