Research

研究

  • Home
  • 研究業績
  • 生成モデル
  • 研究業績

    カテゴリー

    研究領域

    • パーソナライズ画像生成における参照画像の複製効果の定量的評価と改善

      大坂洋豊, 鈴木雅大, 松尾豊

      情報処理学会論文誌

    • Inference-Time Text-to-Video Alignment with Diffusion Latent Beam Search

      Yuta Oshima, Masahiro Suzuki, Yutaka Matsuo, Hiroki Furuta.

      Advances in Neural Information Processing Systems (NeurIPS 2025).

    • Efficient Object-Centric Representation Learning using Masked Generative Modeling

      Akihiro Nakano, Masahiro Suzuki, Yutaka Matsuo

      Transactions on Machine Learning Research (TMLR)

    • The Geometry of Phase Transitions in Diffusion Models: Tubular Neighbourhoods and Singularities

      Manato Yaguchi(*) , Kotaro Sakamoto(*) , Ryosuke Sakamoto(*) , Masato Tanabe(*) , Masatomo Akagawa(*) , Yusuke Hayashi(*) , Masahiro Suzuki, Yutaka Matsuo “The Geometry of Phase Transitions in Diffusion Models: Tubular Neighbourhoods and Singularities”. Transactions on Machine Learning Research (TMLR). (*) Equal Contribution

      Transactions on Machine Learning Research (TMLR)

    • ガウス過程潜在変数モデルとニューラルネットワークの統合によるマルチエージェント記号創発と潜在表現学習

      中村友昭, 鈴木雅大, 谷口彰, 谷口忠大

      日本ロボット学会誌(レター), (2024)

    • Pixyz: a Python library for developing deep generative models

      Masahiro Suzuki, Takaaki Kaneko, Yutaka Matsuo: Pixyz

      Advanced Robotics, (2023)

    • Learning Global Spatial Information for Multi-View Object-Centric Models

      Yuya Kobayashi, Masahiro Suzuki, Yutaka Matsuo

      Advanced Robotics, (2023).

    • 深層生成モデルによる背景情報を利用したシーン解釈

      小林由弥, 鈴木雅大, 松尾豊

      人工知能学会論文誌, 第38巻3号, (2023).

    • End-to-end Training of Deep Boltzmann Machines by Unbiased Contrastive Divergence with Local Mode Initialization

      Shohei Taniguchi, Masahiro Suzuki, Yusuke Iwasawa, Yutaka Matsuo

      International Conference on Machine Learning (ICML 2023) July 2023.

    • Interaction-Based Disentanglement of Entities for Object-Centric World Models

      Akihiro Nakano, Masahiro Suzuki, Yutaka Matsuo.

      “InteractioInternational Conference on Learning Representations (ICLR2023)