Research
研究
研究業績
カテゴリー
研究領域
年
-
第25回画像の認識・理解シンポジウム (MIRU2022) MIRU優秀賞: Pixel vs. Object: 変化キャプショニングにおける最適な画像表現についての研究
土居健人, 濱口竜平, 岩澤有祐, 大西正輝, 松尾豊, 櫻田健,
-
Best Paper Award:“On the Impact of Data Augmentation on Downstream Performance in Natural Language Processing”. Proceedings of the Third Workshop on Insights from Negative Results in NLP, Online and Dublin, Ireland. Association for Computational Linguistics, 2022
Itsuki Okimura, Machel Reid, Makoto Kawano and Yutaka Matsuo.
-
Improving the Robustness to Variations of Objects and Instructions with a Neuro-Symbolic Approach for Interactive Instruction Following
Kazutoshi Shinoda, Yuki Takezawa, Masahiro Suzuki, Yusuke Iwasawa, Yutaka Matsuo
Workshop on Novel Ideas in Learning-to-Learn through Interaction, EMNLP 2021.
-
Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization
Yusuke Iwasawa, and Yutaka Matsuo.
Advances in Neural Information Processing Systems 2021 (NeurIPS2021, Spotlight). December 2021.
-
Co-Adaptation of Algorithmic and Implementational Innovations in Inference-based Deep Reinforcement Learning
Hiroki Furuta, Tadashi Kozuno, Tatsuya Matsushima, Yutaka Matsuo, and Shixiang Shane Gu.
Advances in Neural Information Processing Systems 2021 (NeurIPS2021). December 2021.
-
解剖学的構造から見える脳の計算機能
日本神経回路学会誌, Vol.28, No.4
-
上位オントロジーの主要概念の捉え方の整理
田和辻可昌, 荒川直哉, 山川宏
人工知能学会SWO研究会
-
AfroMT: Pretraining Strategies and Reproducible Benchmarks for Translation of 8 African Languages
Machel Reid, Junjie Hu, Graham Neubig and Yutaka Matsuo
The 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP 2021). November 2021. Association for Computational Linguistics.
-
Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers
Machel Reid, Edison Marrese-Taylor and Yutaka Matsuo.
Findings of The 2021 Conference on Empirical Methods in Natural Language Processing (Findings of EMNLP 2021). Association for Computational Linguistics.
-
“Information-theoretic regularization for learning global features by sequential VAE”
Kei Akuzawa, Yusuke Iwasawa, Yutaka Matsuo
Mach Learn (2021)