Research

研究

研究業績

カテゴリー

研究領域

  • 指値配分を連続確率分布化した深層学習によるマーケットメイキング

    久保 健治, 中川 慧

    金融情報学研究会第35回研究会(SIG-FIN 2025), 2025巻 FIN-035 号 p. 142-148

  • 日本株式市場におけるLLMを用いたサプライズ抽出と決算後ドリフトの実証分析

    種村 賢飛, 久保 健治, 中川 慧

    金融情報学研究会第35回研究会(SIG-FIN 2025), 2025巻 FIN-035号, pp.157-163.

  • Interpreting Multi-Attribute Confounding through Numerical Attributes in Large Language Models

    Hirohane Takagi(*), Gouki Minegishi(*), Shota Kizawa, Issey Sukeda, Hitomi Yanaka (*) Equal Contribution

    Proceedings of The 14th International Joint Conference on Natural Language Processing and The 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (IJCNLP-AACL 2025)_Main

  • Crypto-LLM: Two-Stage Language Model Pre-training with Ciphered and Natural Language Data

    Yohei Kobashi, Fumiya Uchiyama, Takeshi Kojima, Andrew Gambardella, Qi Cao, Yusuke Iwasawa, Yutaka Matsuo

    Proceedings of The 14th International Joint Conference on Natural Language Processing and The 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (IJCNLP-AACL 2025)_Main

  • Topology of Reasoning: Understanding Large Reasoning Models through Reasoning Graph Properties

    Gouki Minegishi, Hiroki Furuta, Takeshi Kojima, Yusuke Iwasawa, Yutaka Matsuo

    Advances in Neural Information Processing Systems (NeurIPS 2025)

  • 大規模画像言語モデルにおける事実性バイアスの体系的な分析

    冨山翔司、山下佳威、 鈴木雅大、 落合桂一、松尾豊

    情報処理学会論文誌

  • サマリレベルでの画像の利用法を用いたマルチモーダル翻訳手法の提案

    冨山翔司, 味曽野雅史, 鈴木雅大, 落合桂一, 岩澤有祐, 松尾豊

    知能と情報

  • Dynamic Injection of Entity Knowledge into Dense Retrievers

    Ikuya Yamada, Ryokan Ri, Takeshi Kojima, Yusuke Iwasawa, Yutaka Matsuo

    Empirical Methods in Natural Language Processing(EMNLP 2025)_Findings

  • When Instructions Multiply: Measuring and Estimating LLM Capabilities of Multiple Instructions Following

    Keno Harada, Yudai Yamazaki, Masachika Taniguchi, Edison Marrese-Taylor, Takeshi Kojima, Yusuke Iwasawa, Yutaka Matsuo

    Empirical Methods in Natural Language Processing(EMNLP 2025)_Findings

  • ReAgent: Reversible Multi-Agent Reasoning for Knowledge-Enhanced Multi-Hop QA

    Zhao Xinjie, Fan Gao, Xingyu Song, Yingjian Chen, Rui Yang, Yanran Fu, Yuyang Wang, Yusuke Iwasawa, Yutaka Matsuo, Irene Li

    Empirical Methods in Natural Language Processing(EMNLP 2025)_Main