Research
研究
研究業績
カテゴリー
研究領域
年
-
Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice
Toshinori Kitamura, Tadashi Kozuno, Yunhao Tang, Nino Vieillard, Michal Valko, Wenhao Yang, Jincheng Mei, Pierre Ménard, Mohammad Gheshlaghi Azar, Remi Munos, Olivier Pietquin, Matthieu Geist, Csaba Szepesvari, Wataru Kumagai, Yutaka Matsuo
International Conference on Machine Learning (ICML 2023). July 2023.
-
Generalized Decision Transformer for Offline Hindsight Infomation Matching
Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu
International Conference on Learning Representations 2022 (ICLR2022, Spotlight).
-
Co-Adaptation of Algorithmic and Implementational Innovations in Inference-based Deep Reinforcement Learning
Hiroki Furuta, Tadashi Kozuno, Tatsuya Matsushima, Yutaka Matsuo, and Shixiang Shane Gu.
Advances in Neural Information Processing Systems 2021 (NeurIPS2021). December 2021.
-
Policy Information Capacity: Information-Theoretic Measure for Task Complexity in Deep Reinforcement Learning
Hiroki Furuta, Tatsuya Matsushima, Tadashi Kozuno, Yutaka Matsuo, Sergey Levine, Ofir Nachum, and Shixiang Shane Gu
International Conference on Machine Learning 2021 (ICML2021).
-
Identifying Co-Adaptation of Algorithmic and implementational Innovations in Deep Reinforcement Learning: Taxonomy of Inference-based Algorithms
Hiroki Furuta, Tadashi Kozuno, Tatsuya Matsushima, Yutaka Matsuo, Shixiang Shane Gu.
International Conference on Machine Learning 2021 (ICML2021).
-
Reward and Optimality Empowerments: Information-Theoretic Measures for Task Complexity in Deep Reinforcement Learning
Hiroki Furuta, Tatsuya Matsushima, Tadashi Kozuno, Yutaka Matsuo, Sergey Levine, Ofir Nachum, and Shixiang Shane Gu.
International Conference on Machine Learning 2021 (ICML2021). July 2021. [paper]
-
Deployment-Efficient Reinforcement Learning via Model-Based Offline Optimization
Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Shane Gu.
International Conference on Learning Representations 2021 (ICLR2021).