Research

研究

  • Home
  • 研究業績
  • 強化学習
  • 研究業績

    カテゴリー

    研究領域

    • Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice

      Toshinori Kitamura, Tadashi Kozuno, Yunhao Tang, Nino Vieillard, Michal Valko, Wenhao Yang, Jincheng Mei, Pierre Ménard, Mohammad Gheshlaghi Azar, Remi Munos, Olivier Pietquin, Matthieu Geist, Csaba Szepesvari, Wataru Kumagai, Yutaka Matsuo

      International Conference on Machine Learning (ICML 2023). July 2023.

    • Generalized Decision Transformer for Offline Hindsight Infomation Matching

      Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu

      International Conference on Learning Representations 2022 (ICLR2022, Spotlight).

    • Co-Adaptation of Algorithmic and Implementational Innovations in Inference-based Deep Reinforcement Learning

      Hiroki Furuta, Tadashi Kozuno, Tatsuya Matsushima, Yutaka Matsuo, and Shixiang Shane Gu.

      Advances in Neural Information Processing Systems 2021 (NeurIPS2021). December 2021.

    • Policy Information Capacity: Information-Theoretic Measure for Task Complexity in Deep Reinforcement Learning

      Hiroki Furuta, Tatsuya Matsushima, Tadashi Kozuno, Yutaka Matsuo, Sergey Levine, Ofir Nachum, and Shixiang Shane Gu

      International Conference on Machine Learning 2021 (ICML2021).

    • Identifying Co-Adaptation of Algorithmic and implementational Innovations in Deep Reinforcement Learning: Taxonomy of Inference-based Algorithms

      Hiroki Furuta, Tadashi Kozuno, Tatsuya Matsushima, Yutaka Matsuo, Shixiang Shane Gu.

      International Conference on Machine Learning 2021 (ICML2021).

    • Reward and Optimality Empowerments: Information-Theoretic Measures for Task Complexity in Deep Reinforcement Learning

      Hiroki Furuta, Tatsuya Matsushima, Tadashi Kozuno, Yutaka Matsuo, Sergey Levine, Ofir Nachum, and Shixiang Shane Gu.

      International Conference on Machine Learning 2021 (ICML2021). July 2021. [paper]

    • Deployment-Efficient Reinforcement Learning via Model-Based Offline Optimization

      Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Shane Gu.

      International Conference on Learning Representations 2021 (ICLR2021).