
Research
研究
研究業績
カテゴリー
研究領域
年
-
指値配分を連続確率分布化した深層学習によるマーケットメイキング
久保 健治, 中川 慧
金融情報学研究会第35回研究会(SIG-FIN 2025), 2025巻 FIN-035 号 p. 142-148
-
日本株式市場におけるLLMを用いたサプライズ抽出と決算後ドリフトの実証分析
種村 賢飛, 久保 健治, 中川 慧
金融情報学研究会第35回研究会(SIG-FIN 2025), 2025巻 FIN-035号, pp.157-163.
-
KokushiMD-10: Benchmark for Evaluating Large Language Models on Ten Japanese National Healthcare Licensing Examinations, Clinical MLLMs Workshop(MICCAI 2025), October 2025.
Junyu Liu, Kaiqi Yan, Tianyang Wang, Qian Niu, Momoko Nagai-Tanima, Tomoki Aoyama
Clinical MLLMs Workshop (MICCAI 2025), October 2025.
-
Interpreting Multi-Attribute Confounding through Numerical Attributes in Large Language Models
Hirohane Takagi(*), Gouki Minegishi(*), Shota Kizawa, Issey Sukeda, Hitomi Yanaka (*) Equal Contribution
Proceedings of The 14th International Joint Conference on Natural Language Processing and The 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (IJCNLP-AACL 2025)_Main
-
Crypto-LLM: Two-Stage Language Model Pre-training with Ciphered and Natural Language Data
Yohei Kobashi, Fumiya Uchiyama, Takeshi Kojima, Andrew Gambardella, Qi Cao, Yusuke Iwasawa, Yutaka Matsuo
Proceedings of The 14th International Joint Conference on Natural Language Processing and The 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (IJCNLP-AACL 2025)_Main
-
Topology of Reasoning: Understanding Large Reasoning Models through Reasoning Graph Properties
Gouki Minegishi, Hiroki Furuta, Takeshi Kojima, Yusuke Iwasawa, Yutaka Matsuo
Advances in Neural Information Processing Systems (NeurIPS 2025)
-
大規模画像言語モデルにおける事実性バイアスの体系的な分析
冨山翔司、山下佳威、 鈴木雅大、 落合桂一、松尾豊
情報処理学会論文誌
-
サマリレベルでの画像の利用法を用いたマルチモーダル翻訳手法の提案
冨山翔司, 味曽野雅史, 鈴木雅大, 落合桂一, 岩澤有祐, 松尾豊
知能と情報
-
Dynamic Injection of Entity Knowledge into Dense Retrievers
Ikuya Yamada, Ryokan Ri, Takeshi Kojima, Yusuke Iwasawa, Yutaka Matsuo
Empirical Methods in Natural Language Processing(EMNLP 2025)_Findings
-
When Instructions Multiply: Measuring and Estimating LLM Capabilities of Multiple Instructions Following
Keno Harada, Yudai Yamazaki, Masachika Taniguchi, Edison Marrese-Taylor, Takeshi Kojima, Yusuke Iwasawa, Yutaka Matsuo
Empirical Methods in Natural Language Processing(EMNLP 2025)_Findings