◼︎書誌情報
山本裕樹, 鈴木雅大, 落合桂一, 松尾豊: Bayesian Neural Newtorkによる景気テキストの不確実性評価と景気指標の開発, 情報処理学会論文誌 (2023)
◼︎概要
近年,ニュースやソーシャルメディアなどのテキストを深層学習モデルで解析して,人々の景況感を予測しようという試みが行われている.既存の研究では景気が良い/悪いといった景気の方向性に着目しているが,景気とは本来,不確かなものであり,テキストの書き手の景況感も中心の周りに広がった分布で評価すべきと考えられる.実際,テキストには景気に良い面と悪い面が併記されたり,先行きの不確実性を強調したりするなど,人間が読んでも書き手の景況感が単純に判断できないものも多い.このような書き手の景況感が不確実なテキストを除くことで,より確信的な景況感を持った意見だけを集めて景況感を評価することが可能となり,マクロな景況感の推定精度向上が期待される.本研究ではBayesian Neural Network(BNN)を用いることで景気テキストの不確実性を評価し,それを使って景況感評価の精度を高めることを提案する.実験ではまずBNNによって景気センチメント推定の精度が向上することを示した.次に,不確実性の高いサンプルを除いてセンチメントを集計することで,より精度の高い景気指標となることが確認できた.最後に,BNNで不確実性が高まるテキストの特徴やその時期について考察した.その結果,得られた不確実性と経済の不確実性指標として用いられている Economic Policy Uncertainty(EPU) 指数との統計的に有意な相関を確認できた.
—